Gene Function in Cell Growth, Differentiation & Development

Director
Univ.-Prof. Dr. rer. nat. Martin Zenke
RWTH Aachen University Hospital
Pauwelsstrasse 30, 52074 Aachen
Helmholtz Institute for Biomedical Engineering
Pauwelsstrasse 20, 52074 Aachen
Phone: +49-241-80 80760 (Office)
+49-241-80 80759 (Secretary)
Fax: +49-241-80 82008
Email: martin.zenke@rwth-aachen.de
Web: http://www.molcell.de
http://www.stemcellfactory.de

Staff
Offergeld, Andrea, Administrative Assistant
Sous, Renate, Administrative Assistant
Aydin, Gülcen, BSc, Technician
Barlin, Meltem, MSc Student
Chauvistré, Heike, PhD Student
 Förster, Malrun, PhD Student
Goncalves Freitas, Joana, MSc Student
Hieronymus, Thomas, PhD, Group Leader
Hubel, Jessica, PhD Student
Jakubcová, Lucie, MSc Student
Kosanke, Maike, MSc Student
Koczy, Matthias, MD Student
Küstermann, Caroline, PhD Student
Leidl, Quentin, BSc Student
Lin, Qiong, PhD, Postdoc
Mitzka, Saskia, Technician
Qin, Jie, PhD Student
Rommerskirchen, Anna, MSc Student
Rösler, Corinna, PhD Student
Schalla, Tatjana, Technician
Sechi, Antonio, PhD, Group Leader
Séré, Kristin, PhD, Group Leader
Sonntag, Stephanie, PhD Student
Szymanski de Toledo, Marcelo, PhD, Postdoc
Tan, Su Ee, MSc Student
Wanek, Paul, BSc, Technician
Wang, Xiaoying, PhD Student
Wolf, Michael, MSc Student
Yamahara, Lisa, MD Student

Stem Cell Biology and Cellular Engineering
Univ.-Prof. Dr. med., Dr. rer. nat. Wolfgang Wagner
Helmholtz Institute for Biomedical Engineering
Pauwelsstrasse 20, 52074 Aachen
Phone: +49-241-80 88611 (Office)
Fax: +49-241-80 82008
Email: wagner@ukaachen.de
Web: http://www.stemcellbiology.ukaachen.de

Candido, Danilo, PhD, Postdoc
Franzen, Julia, PhD Student
Frobel, Joana, PhD Student
Götzke, Roman, MSc Student
Hemeda, Hatim, PhD, Postdoc
Jätzold, Sandra, Technician
Joussen, Sylvia, Technician
Kalwa, Marie, PhD Student
Lohmann, Michael, MD Student
Raic, Anamaria, MSc Student
Schellenberg, Anne, PhD Student
Walenda, Thomas, PhD, Postdoc
Weidner, Carola, PhD Student
Winkelmann, Simone, Technician

Computational Biology Research Group
Dr. rer. nat. Ivan Gesteira Costa Filho
Interdisciplinary Center for Clinical Research (IZKF) Aachen
Helmholtz Institute for Biomedical Engineering
Centre of Medical Technology (MTZ)
Pauwelsstr. 19
52074 Aachen
Phone: +49-241-80 80270
Email ivan.costa@rwth-aachen.de
Web: http://www.costalab.org

Allhoff, Manuel, PhD Student
Ferreira, Marcelo R. P., PhD, Postdoc
Gusmao, Eduardo G., PhD Student
Hänzelmann, Sonja, PhD, Postdoc
Kuo, Joseph, MSc Student
Pires, Juliana F., PhD, Postdoc
Introduction

Signalling pathways impact on gene expression and determine cell identity and function (Fig. 1). The laboratory studies stem cells, including hematopoietic stem cells, embryonic stem cells (ES cells) and mesenchymal stem cells (MSC) and their differentiated progeny. Stem cells are unique in that they combine two properties in one cell: a high self-renewal activity and a broad multilineage differentiation potential. We employ (i) stem cell engineering to generate induced pluripotent stem cells (iPS cells) and (ii) genome precision engineering with CRISPR/Cas to generate cells with wanted properties. In addition, our studies build on a strong expertise in bioinformatics and computational biology for data analysis and prediction.

Induced Pluripotent Stem Cells

Pluripotent stem cells, including ES cells and iPS cells, provide unique opportunities for disease modelling, drug development and cell therapy. However, frequently their differentiation potential is rather poor, in particular towards mesodermal lineages, such as hematopoietic cells. We used cell fusion of ES cells (or iPS cells) with hematopoietic stem cells to increase the propensity and differentiation potential of pluripotent stem cells towards mesodermal lineages (Qin et al., 2014; Fig. 2).

iPS cells represent a particularly appealing cell source for personalized regenerative therapies, since autologous iPS cell-derived cells are expected to bypass immune rejection. However, this assumption has remained controversial. We generated iPS cells from immune-privileged Sertoli cells of testis (Ser-iPS cells; Wang et al., 2014). Ser-iPS cells were less immunogenic in vivo and in vitro than iPS cells obtained from mouse embryonic fibroblasts (MEF-iPS cells). Ser-iPS cells exhibited an immunogenicity similar to isogenic ES cells (Wang et al., 2014; Fig. 3). Our data suggest that immune-privileged Sertoli cells might represent a preferred source for iPS cell generation if it comes to the use of iPS cell-derived cells for transplantation.

The StemCellFactory consortium (www.stemcellfactory.de) is currently testing and further developing the prototype of an automatic production facility for patient-specific iPS cells (Fig. 4). The StemCellFactory consortium combines leading experts in stem cell research and engineering sciences in North Rhine Westphalia, based in Aachen, Bonn, Münster and Herzogenrath.
Magnetic Nanoparticle-labelling of Cells and Tracking by MRI

Labelling of cells with engineered magnetic nanoparticles (MNP) before implantation shows great promise in monitoring successful cell deposition, differentiation, and migration using magnetic resonance imaging (MRI). One obstacle is to achieve a stable long-term labelling of stem and progenitor cells with MNP. One approach for tailoring of MNP properties is the Layer-by-Layer (LbL) assembly of polyelectrolytes (PE) around iron-oxide cores (in collaboration with J. E. Wong, Chemical Process Engineering, AVT.CVT, Faculty of Mechanical Engineering, RWTH Aachen University, Aachen, Germany). We recently investigated PE-coating of ferumoxytol, which is an FDA and EMA approved drug (Celikkin et al., 2014, Fig. 5). We found that the molecular weight of PE is a critical parameter to shape particle size and structure of ferumoxytol MNP. Importantly, the labelling efficiency was significantly higher when PE-coated ferumoxytol particles were used for labelling of mouse bone marrow derived hematopoietic stem cells and dendritic cells (DC) (Celikkin et al., 2014, Fig. 5). Further attempts aim at endowing MRI contrast agents with additional functionalities. Thus, we currently focus on the use of fluorescently labelled PE for coating of MNP using LbL assembly to generate bimodal contrast agents that are suitable for both optical and MR imaging.

Regulation of Actin Cytoskeleton Dynamics and Cell Motility

Remodelling of the actin cytoskeleton is fundamental for many biological processes including cell motility, embryonic development and the immune response. In the context of the immune response, Fcγ receptor-mediated phagocytosis by macrophages and DC plays a crucial role for efficient pathogen recognition and clearance. Fcγ receptor-mediated phagocytosis depends on actin cytoskeleton remodelling, but the molecular basis underlying this process is still incompletely understood. We have found that the leukocyte-specific protein 1 (LSP1) co-localises with actin to nascent phagocytic cups during Fcγ receptor-mediated phagocytosis (Fig. 6). Down regulation of LSP1 severely impairs Fcγ receptor-mediated phagocytosis. Moreover, LSP1 binds to the class I molecular motor myosin1e. The inhibition of LSP1-myosin1e interaction greatly impairs pseudopodia formation around opsonised targets and their subsequent internalisation. Hence, our findings indicate that LSP1-myosin1e bi-molecular complex plays a crucial role in the regulation of actin cytoskeleton remodelling during Fcγ receptor-driven phagocytosis (Maxeiner et al., in revision, Fig. 6).

Epigenetic Rejuvenation of iPS-derived Mesenchymal Stem Cells (iPS-MSC)

MSC comprise a multipotent cell population able of differentiating into adipocytes, chondrocytes, and osteocytes. MSC raise high hopes for clinical application. However, primary cultures of MSC are heterogeneous and greatly...
Mechanisms, such as DNA methylation and histone modifications, remodel chromatin structure and regulate gene expression during cell differentiation and disease. Our main aim is the development of bioinformatics approaches for the integrated analysis of genome-wide gene data, such as gene expression, DNA methylation and histone modifications, to improve our understanding of these biological processes under normal and diseased conditions.

We have developed the first integrated method for the identification of changes in protein-DNA interactions in pairs of cellular conditions. The algorithm performs signal normalization, detection of differential peaks and p-value estimation in an integrative manner (Allhoff et al., 2014). An empirical analysis based on comparing gene expression with differential peaks from cell differentiation and response to treatments demonstrates that our differential peak predictions outperform most competing methods (Fig. 9).

We have also developed statistical tests and graphics methods to detect associations between regulatory regions (DNA-protein interaction sites) or between regulatory regions and genomic signals (Fig. 10). Test results and plots are presented in an html interface allowing a simple analysis of large amounts of genomic data. All the above-mentioned tools are implemented in the Regulatory Genomics Toolbox available at www.regulatorygenomics.org.

Besides aging, pluripotency is also associated with epigenetic changes. To better track the pluripotent state of cell preparations – for example during differentiation processes – we developed a tool based on DNA methylation changes at three specific CpG sites, called “Epi-Pluri-Score” (manuscript in revision; patent pending).

Computational Biology of Cell Differentiation, Diseases and Gene Regulation

Fig. 7: Reprogramming of heterogeneous donor MSC into iPS cells and further differentiation toward standardized iPS-MSC.

Generated iPS-MSC showed the same morphology, immunophenotype and functional properties as parental MSC. Furthermore, gene expression profiles of iPS-MSC highly resembled those of MSC. By using our recently developed “Epigenetic-Aging-Signature” (Weidner et al., 2014), based on DNA methylation changes at specific CpG sites upon aging, we showed that iPS-MSC are estimated much younger than MSC. This demonstrates that the epigenetic rejuvenation upon reprogramming into iPS cells is also maintained in iPS-MSC (Fig. 8).

Fig. 8: iPS-MSC appear epigenetically rejuvenated when predicting the age with our recently developed “Epigenetic-Aging-Signature” based on the DNA methylation status of 99 specific CpG sites.

Besides aging, pluripotency is also associated with epigenetic changes. To better track the pluripotent state of cell preparations – for example during differentiation processes – we developed a tool based on DNA methylation changes at three specific CpG sites, called “Epi-Pluri-Score” (manuscript in revision; patent pending).

Fig. 9: Example of differential peaks detected by comparing H3K4me2 on 0h and 24h after TLR4 induction around the Irf1 gene.

We have also developed statistical tests and graphics methods to detect associations between regulatory regions (DNA-protein interaction sites) or between regulatory regions and genomic signals (Fig. 10). Test results and plots are presented in an html interface allowing a simple analysis of large amounts of genomic data. All the above-mentioned tools are implemented in the Regulatory Genomics Toolbox available at www.regulatorygenomics.org.

Fig. 10: Strategy for identifying spatial association between genomic regions and genomic profiles.
Acknowledgements

- German Research Foundation (DFG)
- German Federal Ministry of Education and Research (BMBF)
- European Union (EU)
- Interdisciplinary Centre for Clinical Research Aachen (IZKF Aachen)
- Aachen Institute for Advanced Study in Computational Engineering Science (AICES)
- Stem Cell Network NRW, Ministry of Innovation, Science, Research and Technology of the State North Rhine-Westphalia
- START-Program of the Faculty of Medicine, RWTH Aachen
- Else-Kröner-Fresenius Foundation
- Donation by U. Lehmann
- Donation by Vision4 Life-Sciences
- StemCellFactory is co-funded by the European Union (European Regional Development Fund - Investing in your future) and the German Federal State North Rhine-Westphalia (NRW).

Selected References in 2014

Patent applications
Method for discriminating between pluripotent and non-pluripotent cells (Epi-Pluri-Score); 2014; EP 14192699.8; Wagner W, Lenz M, Schenk A, Goetzke R.

Team

Lab out at Worriken (Bütgenbach), Belgium