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Introduction

The laboratory has a long standing interest in stem cells, 
including hematopoietic stem cells (HSC), mesenchymal 
stem cells (MSC) and embryonic stem cells (ES cells), and 
their differentiated progeny, such as dendritic cells (DC). 
Additionally, efforts are directed towards enlarging the de-
velopmental potential of somatic cells by employing induced 
pluripotent stem (iPS) cell technology. HSC and MSC re-
side in bone marrow in a highly specialized area, referred to 
as stem cell niche, and in this context we study HSC/MSC 
interactions in homeostasis, pathology and aging.

Biomedical engineering entails the development of biohy-
brid systems, comprising cells and engineered materials. 
Thus, the laboratory investigates the impact of natural and 
synthetic biomaterials on cell growth, differentiation and 
function. Furthermore, nanoparticle formulations are de-
veloped and used for cell tracking in vivo by magnetic reso-
nance imaging (MRI).

Fig. 1: Pluripotent stem cells include embryonic stem cells 
(ES cells) and induced pluripotent stem cells (iPS cells). iPS 
cells are obtained from somatic cells by reprogramming. 
Hematopoietic stem cells (HSC) and mesenchymal stem cells 
(MSC) reside in the bone marrow niche and develop into all 
cells of blood and connective tissue, respectively. Biomateri-
als recapitulate aspects of the niche and influence MSC dif-
ferentiation.

Dendritic Cell Development 
and Function are Controlled by 
Multiple Signalling Pathways 

Dendritic cells (DC) represent a population of highly spe-
cialized immune cells with pivotal importance for antigen 
presentation and effector T cell responses. DC develop via 
multipotent hematopoietic progenitors (MPP) and common 

DC progenitors (CDP) into 
conventional DC (cDC) and 
plasmacytoid DC (pDC) 
(Fig. 2). We have now an-
alysed the activity of spe-
cific signalling pathways on 
DC subset specification and 
DC function (Hieronymus 
et al., 2005; Felker et al., 
2010; Seré et al., 2011).

Flt3 ligand (Flt3L) is im-
portant for steady state 
DC development (Fig. 2). 
The inflammatory cytokine 
GM-CSF impacts on DC 
development already at the 
MPP stage and induced an 
inflammatory gene signa-
ture, including down-reg-
ulation of genes important 
for steady state DC devel-
opment (Figs. 2 and 3; Seré 
et al., 2011).

Fig. 3: Hierarchical cluster 
analysis of gene expression 
in steady state MPP and 
cDC, and GM-CSF treated 
GM-MPP and GM-DC (Seré 
et al., 2011). Blue and red 
colours refer to gene ex-
pression below and above 
median, respectively.

Engineering Stem Cells and Their 
Differentiated Progeny

Pluripotent stem cells, including ES cells and iPS cells, de-
velop into derivatives of all three germ layers (Kim et al., 
2008; 2009; and references therein). ES cell differentiation 
into hematopoietic cells is particularly difficult. We found 
that forced expression of the polycomb group protein 
Bmi1 enhances the propensity of ES cells to develop to-
wards cells of the hematopoietic lineage (Fig. 4; Ding et al., 
2011). Thus, forced Bmi1 expression provides a mean for 
derivation of engineered adult stem cells from ES cells.

The recently available methods for reprogramming of adult 
cells into iPS cells (Kim et al., 2008; 2009; and references 
therein) offer unique perspectives for disease modelling, drug 
development and regenerative medicine. The efficient and si-
multaneous production of large numbers of patient- and dis-
ease-specific human iPS cells has remained challenging and a 
major bottleneck for exploring the potential of iPS cell tech-
nology. We address these limitations in the StemCellFactory 
project, which brings together leading experts in stem cell 
research and engineering sciences, and aims at developing a 
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Fig. 2: Influence of hyper-IL-6/gp130, TGF−β1, Flt3 ligand (Flt3L) 
and GM-CSF signalling on DC lineage commitment and dif-
ferentiation. Cytokines with promoting and inhibiting activity are 
depicted in green and red, respectively.      
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fully automated production process for iPS cells and iPS cell-
derived cardiac muscle and neural cells.

Fig. 5: Human iPS cell colony on mouse embryo fibroblast 
(MEF) feeder (phase contrast image; in collaboration with 
O. Brüstle, Life & Brain, Bonn, Germany).

The manufacturing plant integrates automation and stan-
dardization of all necessary cell culture steps, as well as 
a comprehensive quality management. StemCellFactory is 
supported by Bio.NRW and represents the concerted ef-
forts of eight partners in Aachen, Bonn, Leverkusen and 
Münster (www.stemcellfactory.de).

Iron Oxide Nanoparticles for Cell 
Tracking by MRI
Tracking of cells following their application in vivo is of up-
most importance for monitoring efficacy of cellular thera-
pies. Superparamagnetic iron oxid nanoparticles (MNP) pos-
sess great potential as contrast agents in MRI due to their 
transversal (T2 and T2*) relaxation time shortening effects 
and therefore are frequently used for cell labeling and cell 
tracking by MRI. We found that modifying MNP shell param-
eters, such as charge, size, and surface chemistry, using layer-

by-layer assembly of polyelectrolytes impact on MNP uptake 
into cells and intracellular clustering, and thus on MRI con-
trast properties (Schwarz et al., 2011; in collaboration with 
W. Richtering, Institute of Physical Chemistry, RWTH Aachen 
University, Aachen, 
Germany; U. Himmel-
reich and M. Hodenius, 
Biomedical NMR Unit/
MoSAIC, Faculty of Bio-
medical Sciences and 
Laboratory of BioNano-
Colloids, Interdisciplin-
ary Research Centre, 
Katholic University Leu-
ven, Belgium; M. Hoe-
hn, In vivo NMR Re-
search Group, MPI for 
Neurological Research, 
Cologne, Germany; F. 
Kiessling, Experimen-
tal Molecular Imag-
ing, Helmholtz Institute 
Aachen, Germany) .

Fig. 6: MRI contrast po-
tential of polyelectro-
lyte MNP. MNP-labeled 
DC were filled in drill 
holes of agarose phan-
toms and MR images 
were acquired at 11.7 T. 
(A) Pseudocolour depic-
tion of T2 relaxation 
times from quantitative 
T2 map scans. (B and C) 
T2*-weighted 3D gradi-
ent echo MRI. (Schwarz 
et al., 2011).

Cellular Aging Determined by 
Specific DNA Modification
“Cellular aging” of cells in culture has fundamental impli-
cations for therapeutic cell preparations. Aging is reflected 
by changes in cellular morphology, proliferation and dif-
ferentiation potential. Primary cells can only be expanded 
for a limited number of passages, until they enter a senes-
cent state and unequivocally stop proliferation. Commonly 
used parameters for cellular aging are passage number, cu-
mulative population doublings and the time of in vitro cul-
ture. These parameters need to be carefully documented 
throughout culture expansion – otherwise it was so far not 
possible to retrospectively determine the state of cellular 
aging in cell products.

Recently, we demonstrated that long-term culture of 
MSC or fibroblasts is associated with specific epigenetic 
modifications in DNA methylations (Koch et al., 2011a, 
2011b; Schellenberg et al. 2011a). Therefore, it was con-
ceivable that methylation at specific cytosine residues 
provides an epigenetic signature for determining cellular 
aging. We found that long-term culture can be tracked by 
a simple method based on continuous DNA methylation 
changes at six specific CpG sites (Fig. 7). This “Epigenetic 

C
el

l B
io

lo
gy

Fig. 4: ES cells were transduced with Bmi1 vector (Bmi1) or 
empty vector (vector) and stained for Bmi1 with a specific 
antibody (anti-Bmi1). Cell nuclei were stained with DAPI 
(DNA) (Ding et al., 2011).
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Signature for Cellular Aging” can be used as a biomarker 
for various cell types to predict the state of senescence 
with respect to the number of passages or days of in vitro 
culture (Patent application: EP 11176593.9).

Biomaterials and Surface 
Structure Influence Growth of 
Cells in Culture

MSC have raised high hopes for regenerative medicine 
and tissue engineering due to their ease of culture expan-
sion, immunomodulatory activity and differentiation po-
tential towards adipogenic, osteogenic and chondrogenic 
lineages. Frequently, MSC are cultured on plane polysty-
rene cell culture dishes. In contrast, the microenviron-
ment under in vivo conditions is not flat. In cooperation 
with Fraunhofer Institute for Production Technology (IPT, 
Aachen) polystyrene micro-structured surfaces with vary-
ing groove opening widths and pitches (0.5 – 20µm) were 
produced to analyze their impact on MSC growth, differ-
entiation potential and replicative senescence.

MSC have been observed to align, elongate and migrate 
parallel to micro-structured grooves. Moreover, we discov-
ered that proliferation and differentiation capacity of MSC 
is affected by varying groove size: micro-structured sur-
faces, which induce a rather round morphology, promoted 
adipogenic differentiation (Fig. 8), whereas those surfaces, 
which result in increased cell elongation, enhanced osteo-
genic differentiation.

Additionally, in further work we identified the synthetic, 
biodegradable biomaterial Resomer LT706 as being os-
teoinductive for MSC (Neuss et al., 2011; in collabora-
tion with S. Neuss und W. Jahnen-Dechent, Biointerface 
Group, Helmholtz Institute for Biomedical Engineering and 

Institute for Pathology, RWTH Aachen; J. Salber, Institute 
for Technical and Macromolecular Chemistry, RWTH 
Aachen). 

These observations raise potential implications in tissue en-
gineering, since they may provide a non-invasive and bio-
material-based tool to regulate cell function.
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Fig. 8: Adipogenic differentiation potential of MSC on 
micro-structured surfaces. The degree of adipogenic differ-The degree of adipogenic differ-
entiation was assessed by BODIPY and DAPI staining and 
normalized to a non-structured polystyrene control and is 
depicted in heat map format.

Fig. 7: Six CpG sites reflect the number of passages. Inde-Six CpG sites reflect the number of passages. Inde-
pendent cell preparations were used for validation of the 
“Epigenetic-Signature for Cellular Aging” by pyrosequenc-
ing of six specific CpG sites to predict the number of pas-
sages (Koch et al., 2011c; red: fibroblasts; blue: AT-MSC; 
green: BM-MSC.
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