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Introduction

Signalling pathways impact on gene expression and de-
termine cell identity and function (Fig. 1). The laboratory 
studies stem cells, including hematopoietic stem cells, em-
bryonic stem cells (ES cells) and mesenchymal stem cells 
(MSC) and their differentiated progeny. Stem cells are 
unique in that they combine two properties in one cell: a 
high self-renewal activity and a broad multilineage differ-
entiation potential. We employ (i) stem cell engineering to 
generate induced pluripotent stem cells (iPS cells) and (ii) 
genome precision engineering with CRISPR/Cas to gener-
ate cells with wanted properties. In addition, our studies 
build on a strong expertise in bioinformatics and computa-
tional biology for data analysis and prediction.

Fig. 1: Ligand binding to cognate receptor induces signal-
ling pathways, transcription factor binding to DNA, chro-
matin modifications and target gene activation. Histone 
modification (green); DNA methylation (yellow).

Induced Pluripotent Stem Cells
      
Pluripotent stem cells, including ES cells and iPS cells, pro-
vide unique opportunities for disease modelling, drug de-
velopment and cell therapy. However, frequently their 

Fig. 2: (A) Human iPS cells fused with hematopoietic stem 
cells (Hybrid) show prominent cystic structures in EB as-
says, indicating differentiation bias towards mesoderm. (B) 
Gene expression profiling demonstrates mesendodermal 
differentiation bias of hybrids.

differentiation potential is rather poor, in particular to-
wards mesodermal lineages, such as hematopoietic cells. 
We used cell fusion of ES cells (or iPS cells) with hema-
topoietic stem cells to increase the propensity and dif-
ferentiation potential of pluripotent stem cells towards 
mesodermal lineages (Qin et al., 2014; Fig. 2).

iPS cells represent a particularly appealing cell source 
for personalized regenerative therapies, since autol-
ogous iPS cell-derived cells are expected to bypass im-
mune rejection. However, this assumption has remained 
controversial. We generated iPS cells from immune-priv-
ileged Sertoli cells of testis (Ser-iPS cells; Wang et al., 
2014). Ser-iPS cells were less immunogenic in vivo and 
in vitro than iPS cells obtained from mouse embryonic fi-
broblasts (MEF-iPS cells). Ser-iPS cells exhibited an immu-
nogenicity similar to isogenic ES cells (Wang et al., 2014; 
Fig. 3). Our data suggest that immune-privileged Sertoli 
cells might represent a preferred source for iPS cell gen-
eration if it comes to the use of iPS cell-derived cells for 
transplantation.

Fig. 3: Ser-iPS cells exhibit reduced CD4 T cell stimulation 
potential in vitro. MEF-iPS cells show some immunogenic-
ity and T cell stimulation potential.

The StemCellFactory consortium ( www.stemcellfactory.de) 
is currently testing and further developing the prototype of 
an automatic production facility for patient-specific iPS cells 
(Fig. 4). The StemCellFactory consortium combines leading 
experts in stem cell research and engineering sciences in 
North Rhine Westphalia, based in Aachen, Bonn, Münster 
and Herzogenrath.

Fig. 4: StemCellFactory, an automatic production facility 
for patient-specific iPS cells.
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Magnetic Nanoparticle-labelling 
of Cells and Tracking by MRI

Labelling of cells with engineered magnetic nanoparti-
cles (MNP) before implantation shows great promise in 
monitoring successful cell deposition, differentiation, and 
migration using magnetic resonance imaging (MRI). One 
obstacle is to achieve a stable long-term labelling of stem 
and progenitor cells with MNP. One approach for tailoring 
of MNP properties is the Layer-by-Layer (LbL) assembly 
of polyelectrolytes (PE) around iron-oxide cores (in col-
laboration with J. E. Wong, Chemical Process Engineering, 
AVT.CVT, Faculty of Mechanical Engineering, RWTH 
Aachen University, Aachen, Germany). We recently in-
vestigated PE-coating of ferumoxytol, which is an FDA 
and EMA approved drug (Celikkin et al., 2014, Fig. 5). We 
found that the molecular weight of PE is a critical param-
eter to shape particle size and structure of ferumoxytol 
MNP. Importantly, the labelling efficiency was significantly 
higher when PE-coated ferumoxytol particles were used 
for labelling of mouse bone marrow derived hematopoi-
etic stem cells and dendritic cells (DC) (Celikkin et al., 
2014, Fig. 5). Further attempts aim at endowing MRI con-
trast agents with additional functionalities. Thus, we cur-
rently focus on the use of fluorescently labelled PE for 
coating of MNP using LbL assembly to generate bimod-
al contrast agents that are suitable for both optical and 
MR imaging.

Fig. 5: Labelling of cells with PE-coated and uncoated 
ferumoxytol particles. (A) Results of labelling efficiency are 
mean values ± SD (n=3; ***: p<0.01). (B) Transmission 
electron micrographs of MNP-labelled cells. Scale bars, 1 
µm.

     

Regulation of Actin Cytoskeleton 
Dynamics and Cell Motility 

Remodelling of the actin cytoskeleton is fundamental for 
many biological processes including cell motility, embryon-
ic development and the immune response. In the context 
of the immune response, Fcg receptor-mediated phago-
cytosis by macrophages and DC plays a crucial role for 
efficient pathogen recognition and clearance. Fcg recep-
tor-mediated phagocytosis depends on actin cytoskeleton 
remodelling, but the molecular basis underlying this pro-
cess is still incompletely understood. We have found that 
the leukocyte-specific protein 1 (LSP1) co-localises with ac-
tin to nascent phagocytic cups during Fcg receptor-mediat-
ed phagocytosis (Fig. 6). Down regulation of LSP1 severely 
impaired Fcg receptor-mediated phagocytosis. Moreover, 
LSP1 binds to the class I molecular motor myosin1e. The 
inhibition of LSP1-myosin1e interaction greatly impairs 
pseudopodia formation around opsonised targets and their 
subsequent internalisation. Hence, our findings indicate 
that LSP1-myosin1e bi-molecular complex plays a crucial 
role in the regulation of actin cytoskeleton remodelling dur-
ing Fcg receptor-driven phagocytosis (Maxeiner et al., in re-
vision, Fig. 6).

Fig. 6: (A-C) Co-localisation of actin (A) and LSP1 (B) dur-
ing Fcg receptor-mediated phagocytosis. Arrows indicate 
accumulation of actin and LSP1 around opsonised beads. 
Scale bar: 10 μm. (D-E) LSP1 down regulation impairs 
lamellipodia formation around opsonised beads. In control 
cells (arrows in D), opsonised red blood cells (RBC) are 
surrounded by lamellipodia during Fcg receptor-mediated 
phagocytosis. By contrast, in LSP1-deficient cells lamellipo-
dia formation at RBC-cell contact sites is inhibited (arrows 
in E). Scale bar: 5 μm.

Epigenetic Rejuvenation of iPS-
derived Mesenchymal Stem Cells 
(iPS-MSC)

MSC comprise a multipotent cell population able of differ-
entiating into adipocytes, chondrocytes, and osteocytes. 
MSC raise high hopes for clinical application. However, 
primary cultures of MSC are heterogeneous and greatly 
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Computational Biology of Cell 
Differentiation, Diseases and 
Gene Regulation

Mechanisms, such as DNA methylation and histone mod-
ifications, remodel chromatin structure and regulate gene 
expression during cell differentiation and disease. Our main 
aim is the development of bioinformatics approaches for 
the integrated analysis of genome-wide gene data, such as 
gene expression, DNA methylation and histone modifica-
tions, to improve our understanding of these biological pro-
cesses under normal and diseased conditions.
We have developed the first integrated method for the 
identification of changes in protein-DNA interactions in 
pairs of cellular conditions. The algorithm performs signal 
normalization, detection of differential peaks and p-value 
estimation in an integrative manner (Allhoff et al., 2014). An 
empirical analysis based on comparing gene expression with 
differential peaks from cell differentiation and response to 
treatments demonstrates that our differential peak predic-
tions outperform most competing methods (Fig. 9).

Fig. 9: Example of differential peaks detected by compar-
ing H3K4me2 on 0h and 24h after TLR4 induction around 
the Irf1 gene.

We have also developed statistical tests and graphics meth-
ods to detect associations between regulatory regions 
(DNA-protein interaction sites) or between regulatory re-
gions and genomic signals (Fig. 10). Test results and plots 
are presented in an html interface allowing a simple anal-
ysis of large amounts of genomic data. All the above-men-
tioned tools are implemented in the Regulatory Genomics 
Toolbox available at www.regulatorygenomics.org.

Fig. 10: Strategy for identifying spacial association be-
tween genomic regions and genomic profiles. 

affected by the starting material, culture and isolation pro-
cedures. To overcome these obstacles we differentiated 
MSC from iPS cells by using a simple technique of switch-
ing to initial MSC-culture conditions (Frobel et al., 2014, 
Fig. 7).

Fig. 7: Reprogramming of heterogeneous donor MSC into 
iPS cells and further differentiation toward standardized 
iPS-MSC.

Generated iPS-MSC showed the same morphology, immu-
nophenotype and functional properties as parental MSC. 
Furthermore, gene expression profiles of iPS-MSC highly 
resembled those of MSC. By using our recently developed 
“Epigenetic-Aging-Signature” (Weidner et al., 2014), based 
on DNA methylation changes at specific CpG sites upon ag-
ing, we showed that iPS-MSC are estimated much younger 
than MSC. This demonstrates that the epigenetic rejuvena-
tion upon reprogramming into iPS cells is also maintained 
in iPS-MSC (Fig. 8).

Fig. 8: iPS-MSC appear epigenetically rejuvenated when 
predicting the age with our recently developed “Epigenet-
ic-Aging-Signature” based on the DNA methylation status 
of 99 specific CpG sites.

Besides aging, pluripotency is also associated with epigen-
etic changes. To better track the pluripotent state of cell 
preparations – for example during differentiation processes 
– we developed a tool based on DNA methylation changes 
at three specific CpG sites, called “Epi-Pluri-Score” (manu-
script in revision; patent pending).             
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