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differentiation potential (Fig. 2). This Epi-Pluri-Score is based 
on DNAm levels at only two CpG sites (associated with the 
genes ANKRD46 and C14orf155) and provides a cost-effec-
tive and reliable method for quality control of iPS cells and 
ES cells (Lenz et al., 2015).

Fig. 2: Quality control of three iPS cell lines with Epi-Pluri-
Score demonstrates association with pluripotent cells. Red 
cloud: DNA methylation profiles of 264 pluripotent cell 
samples; blue cloud: DNA methylation profiles of 1,951 
non-pluripotent cell samples (Lenz et al., 2015).

StemCellFactory

Cell culture of pluripotent cells is particularly labour inten-
sive. Reprogramming of somatic cells into iPS cells, culture 
expansion and differentiation towards specific lineages re-
quire culture over several months. On the other hand, drug 
testing in personalized medicine necessitates simultane-
ous handling of many patient specific iPS cell lines in paral-
lel. To address this challenge the StemCellFactory consortium 
(www.stemcellfactory.de) is currently testing and further de-
veloping the prototype of an automatic production facili-
ty for patient-specific iPS cells (Fig. 3). The StemCellFactory 
consortium combines leading experts in stem cell research 
and engineering sciences in North Rhine Westphalia, based 
in Aachen, Bonn, Münster and Herzogenrath. This platform 
enables automated generation of iPS cells and their differen-
tiation towards hematopoietic, cardiogenic and neuronal lin-
eages for high throughput drug testing.

Fig. 3: StemCellFactory, an automatic production facility for 
patient-specific iPS cells.
     

Introduction

The institute is working on different types of stem cells: (i) 
somatic stem cells isolated from tissues of mice and man, 
which are primed to differentiate towards specific lineages 
(Fig. 1). Examples for somatic stem cells are hematopoietic 
stem cells (HSC) that give rise to all types of blood cells, and 
mesenchymal stem cells (MSC) that differentiate towards 
cells from bone, cartilage and adipose tissue. (ii) Embryonic 
stem cells (ES cells) are pluripotent and can be differentiat-
ed towards all cell types of the three germ layers. (iii) It is al-
so possible to reprogram terminally differentiated cells into 
induced pluripotent stem cells (iPS cells), which closely re-
semble ES cells (Fig. 1). Various conditions are modified to 
regulate self-renewal and lineage-specific differentiation of 
these stem cell types. For example the impact of specific bio-
materials and surface topography on stem cell growth and 
differentiation is investigated. Furthermore, the laboratory 
is using genome precision engineering with CRISPR/Cas to 
generate cells with wanted properties. Many of these stud-
ies build on a strong expertise in bioinformatics and compu-
tational biology for data analysis and prediction.

Fig. 1: Schematic presentation of different types of stem 
cells used in the laboratory.

Epigenetic Definition of Cells in 
Culture – a Quality Check

Quality control of cell preparations is important – particular-
ly for cells to be used in clinical applications and regenerative 
medicine. To this end, we designed new assays based on epi-
genetic modifications (Lenz et al., 2015; de Almeida et. al., 
2016). The genetic information of our DNA is not only en-
coded by the sequence of the four bases, but also in epigen-
etic modifications that govern activity of genomic regions. 
There are different types of epigenetic modifications – for 
example DNA can be methylated in the context of cytosine-
guanine dinucleotides (CpG sites). These DNA methylation 
(DNAm) patterns are modified in the course of develop-
ment, aging and disease. Deep sequencing and microarray 
technology facilitate genome wide analysis of DNAm profiles 
to identify cell type specific epigenetic characteristics. A large 
set of genome wide DNAm profiles of iPS cells, ES cells and 
various more differentiated cells has been used to identify a 
simple epigenetic signature that is indicative for pluripotent 
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Transcription Factor Circuitry of 
Dendritic Cell Development 

Dendritic cells (DC) are professional antigen presenting 
cells that develop from HSC in bone marrow through suc-
cessive steps of lineage commitment and differentiation. 
Multipotent progenitors (MPP) are committed to DC re-
stricted common DC progenitors (CDP), which differ-
entiate into specific DC subsets: classical DC (cDC) and 
plasmacytoid DC (pDC) (Fig. 4A). To determine epigenetic 
states and regulatory circuitries during DC differentiation, 
we measured consecutive changes of genome-wide gene 
expression, histone modification and transcription factor 
occupancy during the sequel MPP-CDP-cDC/pDC (Fig. 4B; 
Lin et al., 2015a).

Fig. 4: (A) The sequel MPP-CDP-cDC/pDC of DC develop-
ment. (B) Changes in gene expression (mRNA) and histone 
H3 methylation (H3K4me1, H3K4me3 and H3K27me3) and 
transcription factor PU.1 occupancy during DC develop-
ment. The H3K4me1 and H3K4me3 marks are associated 
with gene activation and the H3K27me3 mark is associated 
with gene silencing.

Information of these different levels of molecular infor-
mation was subsequently integrated into a computational 
network to devise a transcription factor circuitry for DC 
commitment and subset specification (Fig. 5). This circuit-
ry reflects the transcription factor hierarchy that drives the 
sequel MPP-CDP-cDC/pDC, including feedback loops in-
ferred for individual or multiple factors. These mechanisms 
stabilize distinct stages of DC development and DC subsets 
(Lin et al., 2015a).

Fig. 5: Network illustration of the transcription factor 
circuitry that drives DC development from MPP towards 
CDP and DC subsets (cDC/pDC).

Magnetic Nanoparticles for 
Bimodal Tracking of Cells by 
Optical and MR Imaging
       
Cell-based therapies have high potential for treatment of 
a wide range of diseases, including cancer, immunologi-
cal or neurodegenerative disorders. However, frequently 

Fig. 6: Optical imaging and MRI of DC labelled with fluoro-
chrome-tagged polyelectrolyte (FPE)-coated MNP. (A) Phase 
contrast and fluorescence images of DC labelled with FPE-
coated MNP (left and right, respectively). Scale bars, 10 µm. 
(B) T2*-weighted multiple gradient echo images in coronal 
direction of agarose phantoms filled with DC labelled with 
uncoated MNP (left) and FPE-coated MNP (right). Note, that 
PE-coating improved MRI contrast properties of MNP. 

C
el

l B
io

lo
gy



8

2015
Helmholtz-Institute for Biomedical Engineering
RWTH Aachen University

In contrast over-expression of GAR22β (or its re-ex-
pression in GAR22β-/- cells) reduced cell motility and FA 
turnover. Mechanistically, GAR22β-actin interaction was 
stronger than GAR22β-microtubules interaction result-
ing in GAR22β localisation and dynamics that mirrored 
those of the actin cytoskeleton. Furthermore, a pro-
teomic approach demonstrated that GAR22β interacts 
with the regulator of microtubule dynamics end-binding 
protein 1 (EB1). This GAR22β-EB1 interaction was re-
quired for the ability of GAR22β to modulate cell motili-
ty. Notably, GAR22β is highly expressed in mouse testes 
where it co-localises with actin (Fig. 7) and its absence 
resulted in reduced spermatozoa generation, lower ac-
tin levels in testes and impaired spermatozoa motility 
(Gamper et al., 2015). These findings identify GAR22β as 
a novel regulator of cell adhesion and migration that im-
pacts on spermatogenesis.

Computational Biology of Cell 
Differentiation, Diseases and 
Gene Regulation
     
Epigenetic mechanisms, such as DNA methylation and his-
tone modification, remodel chromatin architecture on a 
genome-wide scale. To better understand these processes, 
we develop innovative bioinformatics approaches for the 
integrated analysis of genome-wide gene expression da-
ta, histone modifications (chromatin immunoprecipitation 
followed by next generation sequencing, ChIP-Seq; Fig. 8), 
open chromatin assay (DNase-Seq) and DNA sequencing 
data. 

For example, bioinformatics was applied for integrat-
ing the epigenetic and regulatory changes occuring dur-
ing DC development based on gene expression, ChIP-Seq 
and DNA sequencing data. In short, we first detected cell 
specific PU.1 peaks close to genes with cell specific ex-
pression by ChIP-seq. Then, we analyzed the sequence 
around these PU.1 peaks for detection of transcription 
factors potentially co-binding with PU.1 in a cell specific 
manner. Third, we devised a PU.1 centred regulatory net-
work based on PU.1 occupancy and gene expression (Fig. 
5). This approach identified targets of known and nov-
el transcription factors that impact on DC development 
(Lin et al., 2015a). 

Fig. 8: Work flow of analysing ChIP-seq data and identify-
ing peaks from genome-wide next generation sequencing 
data.

translation to clinical applications is hampered due to the 
lack of adequate tools for cell tracing after transplanta-
tion. It is possible to label cells with magnetic iron-oxide 
nanoparticles (MNP) and then monitor their distribution 
and functional integration upon transplantation in vivo by 
magnetic resonance imaging (MRI). 

For effective labelling of hematopoietic stem and progen-
itor cells or DC, the magnetic iron-oxide nanoparticles 
were further optimized by using layer-by-layer assembly of 
polyelectrolytes (PE) (Schwarz et al., Nanomedicine, 2012; 
Celikkin et al., 2015; in collaboration with W. Richtering 
and J. E. Wong, Institute of Physical Chemistry, RWTH 
Aachen University, Aachen, Germany and M. Hoehn, In vi-
vo NMR Research Group, MPI for Metabolism Research, 
Cologne, Germany). To further improve on cellular label-
ling and tracking we currently employ fluorescently tagged 
PE to add optical imaging modalities onto MRI contrast 
agents (Jakubcová et al.; manuscript in preparation; Fig. 6). 
This will also enable histological analysis of cells upon func-
tional integration in tissues.

GAR22β is Important for 
Cytoskeleton Dynamics and Cell 
Motility 
         
Spatio-temporal cytoskeleton dynamics is pivotal for ma-
ny biological functions, including cell adhesion and migra-
tion. Gas2-related protein on chromosome 22 (GAR22β) 
is a gene induced by thyroid hormone in human red 
blood cells (Gamper et al., Exp. Hematol., 2009). We 
have generated GAR22β knockout mice (GAR22β-/-) 
and found that cells lacking GAR22β moved faster than 
cells of wild type controls. Loss of GAR22β increased the 
turnover of focal adhesions (FA) (Gamper et al., 2015). 

Fig. 7: (A-C) GAR22β co-localises with actin in seminiferous 
tubules. Cryosections of wild type testes were stained with 
fluorescent phalloidin and GAR22β antibodies and analysed 
by confocal microscopy. Actin distribution throughout the 
seminiferous tubuli and its co-localisation with GAR22β 
(arrows) is indicated. In the merged image, actin is shown 
in red, GAR22β in green. Scale bar: 50 µm. (D-E) Deletion 
of GAR22β gene alters spermatozoa morphology. Wild type 
spermatozoa (D) were characterised by a relatively straight 
shape (arrow), whereas GAR22β-/- spermatozoa (E) showed 
a prominent 180° bend at approximately the end of the mid 
piece (arrow). Scale bar: 10 µm.
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Another study focused on the association between DNA 
methylation changes (MethylCap-Seq), histone modifica-
tion (ChIP-Seq), gene expression (RNA-Seq) and nuclear 
lamina contacts during replicative senescence of fibro-
blasts and mesenchymal stem cells (Hänzelmann et al., 
2015). This analysis demonstrated that genomic regions 
that lose methylation during culture expansion are closely 
associated with the nuclear lamina. In contrast, genomic 
regions that become more methylated in senescence are 
close to genes that are also differentially expressed dur-
ing senescence. 

In collaboration with the Department of Hematology, 
Oncology and Stem Cell Transplantation, RWTH Aachen 
University Hospital, Aachen, Germany we investigated epi-
genetic and regulatory mechanisms underlying regulation of 
the tumor suppressor gene MTSS1 in chronic myeloid leu-
kemia (Schemionek et al., 2015). 
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